Stranica 1 od 3 123 ZadnjaZadnja
Pokazuje rezultate 1 do 20 od 47

Tema: Sunce

  1. #1
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Sunce

    Sunce je zvezda, samo jedna od preko 100 milijardi zvezda u galaksiji Mlečni put.
    Locirano kraj Sagittarius Carina spiralne ruke, zvane Orion Spur, Suncu je potrebno 200 miliona godina da završi orbitu oko centra galaksije. Energiju proizvodi nuklearnom fuzijom, Sunce je žuto-narandžasta zvezda spektra tipa G2V.
    Poređeno sa ostalim zvezdama, Sunce je prosečne veličine. Neke patuljaste zvezde, kao Sirius B i Wolf 359, su samo delić njegove veličine. Gigantske zvezde, kao Delta Orions, mogu biti 10-50 puta vece.
    Supergigantska zvezda Antares ima prečnik 300 puta veći od prečnika našeg Sunca, a neke druge zvezde su jos veće. Poređeno sa Zemljom i drugim planetama Sunce je ogromno. Sa prečnikom od 1.392.000 km, njegova širina jednaka je širini 109 Zemlji poređanih ivicom jedna do druge. Ustvari, 1.000.000 Zemlji može da se umetne u Sunce. Svakodnevnim terminima to bi značilo, ako bi neko mogao da vozi kola po povrsini Sunca brzinom od 100 km/h trebalo bi mu 5 godina da ga jednom obiđe oko ekvatora.
    Veličina Sunca nije statična. Poslednja otkrića pokazuju da se Sunčev prečnik steže 1 km svakog sata. Ako ova aktivnost traje od tokom celog XX veka, Sunce koje mi sada vidimo je približno 800 km u prečniku manje od onoga koje su videli nasi pradedovi. Po ovoj teoriji ''solarno skupljanje'' može da bude jadna od mnogobrojnih akcija, koje zajedno, stabilizuju Sunce od ogromnog gubitka energije.
    Još jedno otkriće iznenadilo je astronome. Otkriveno je da se svaka 2 h 40min površina Sunca pokreće, pulsira. Brzinom od oko 6 km/h, površina se širi i skuplja menjajući prečnik Sunca za oko 10 km.
    Sunce je tako masivno da sadrzi 99,86% ukupne mase Sunčevog sistema, a njegova masa je ekvivalentna masi 332.950 Zemlji. U fotosferi, površina Sunca, gasovi su toliko retki da ih mozemo smatrati vakuumom. Duboko u kori, materija je i dalje u stanju plazme. Računa se da je gustina vise od 12 puta veća od gustine olova. Flaša ove plazme imaće veću masu od mase čoveka na Zemlji. Prosečna gustina Sunca je 1.4 puta veća od gustine vode, približno gustina mrkog uglja.
    Maksimalna temperatura prelazi 6.000 oC, približno duplo toplije od acetilenske baklje! Sunčeve pege su površine relativno niže temperature, dok su Sunčevi pramenovi topliji. Ustvari, novi dokazi pokazuju da su Sunčevi pramenovi topliji nego što se ikad mislilo.
    где си пошла с крмељиве очи

  2. #2
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Nuklearna fuzija

    Tipična fuziona reakcija može se prikazati jednačinom:

    jezgro 1 + jezgro –> jezgro 3 + energija

    U ovoj jednačini za Sunce je najbitnija energija. Osnova celog procesa je to da se u fuzionoj reakciji ukupna masa čestica koje reaguju smanjuje: masa jezgra 3 je manja od zbira maza jezgra 1 i jezgra 2. Da bi ovo razumeli, podsetimo se jednog od najvažnijih zakona u fizici – zakona održanja mase i energije. Ajnštajn je, početkom XX veka, da materija i energija mogu naizmenično prelaziti iz jednog oblika u drugi.

    Veza između mase i ekvivalentne energije data je čuvenom relacijom:

    E = mc2

    Na osnovu jednačine se vidi da je 1 kg materije ekvivalentan energiji od 9·1016J. Brzina svetlosti je toliko velika da je i vrlo mala masa ekvivalentna ogromnoj količini energije. Zakon održanja mase i energije predviđa da suma mase i energije u nekom sistemu uvek ostaje konstantna. Ne postoje nikakvi poznati izuzetci ovog zakona. Prema ovom zakonu, neki objekat može doslovno da nestane, a njegovo mesto će zauzeti odgovarajuća količina energije. Ako bi, na primer, neki mađioničar izveo da zec neki zec stvarno nestane, bljesak nastale energije bio bi toliko jak da bi uništio mađioničara, publiku, pa i čitav okolni grad. U slučaju fuzionih reakcija razlika u masama između produkata reakcije i reaktanata se pretvara u ekvivalentnu energiju, pretežno u obliku elektromagnetnog zračenja. Svetlosna energija koju vidimo da dolazi sa Sunca nastala je upravo na takav način, a to znači da se masa Sunca polako smanjuje.
    где си пошла с крмељиве очи

  3. #3
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Proton-proton ciklus

    Sva atomska jezgra su pozitivno naelektrisana, a kao što je svima poznato, ista naelektrisanja se međusobno odbijaju. Osim toga, što se dva jezgra nalaze na manjem međusobnom rastojanju sila odbijanja između njih je veća. Kako je onda uopšte moguće da se dva jezgra, npr dva protona, međusobno sjedine i formiraju neko novo, teže, jezgro?

    Ako se dva protona pre sudara kreću malim relativni brzinama oni će se odbijati, ali ako se isti ti protoni sudare dovoljno velikim brzinama, može doći do kvantnog efekta tunelovanja, jedan proton će bukvalno uleteti u drugi i tako će se oni naći na rastojanju manjem od radijusa dejstva jake nuklearne sile. Na rastojanju manjem od 10-15m jačina privlačenja nuklearnih sila prevazilazi jačinu elektrostatičkog odbijanja i dolazi do fuzione reakcije. Brzina koja je potrebna za odigravanje jednog ovakvog sudara veća je od nekoliko stotina kilometara u sekundi.

    Toliko veliku brzinu protoni mogu posedovati tek na temperaturi od oko 107K. Upravo ovakvi uslovi vladaju u jezgru Sunca i drugih zvezda.

    Na toliko visokim temperaturama dva protona mogu da interaguju i pri tome nastaje drugi proton, neutron i dve nove elementarne čestice.
    где си пошла с крмељиве очи

  4. #4
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Ovakva reakcija može se predstaviti jednačinom:

    p1+ + p2+ –> p3+ + n0 +e+ + νe … (1)

    Čestica koja je označena sa e+ naziva se pozitron. To je, ustvari, pozitivno naelektrisan elektron. Sve osobine pozitrona identične su odgovarajućim osobinama elektrona (masa, količina naelektrisanja), razlika je jedino u vrsti naelektrisanja – elektron je naelektrisan negativno a pozitron pozitivno. Ovakve čestice, koje se samo razlikuju u vrsti naelektrisanja koje nose, naučnici nazivaju antičesticama. Ovaj novonastali pozitron nalazi se okružen mnoštvom elektrona, sa kojima on gotovo trenutno interaguje u procesu poznatom kao anihilacija:

    e+ + e- –> 2 γ

    U ovom procesu nestaju i čestica i antičestica a oslobađa se ekvivalentna energija u obliku fotona γ-zraka.
    где си пошла с крмељиве очи

  5. #5
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Poslednji produkt reakcije (1) označen kao νe je čestica koja je poznata pod nazivom netrino.

    Naziv ove čestice izveden je i italijanskog jezika i znači “mali neutralan”. Neutrini ne poseduju naelektrisanje, a smatra se da je njihova masa vrlo mala, deset hiljada puta manja od mase elektrona (koji ima dve hiljade puta manju masu od protona). Ustvari, fizičari još sa sigurnošću ne znaju, ne samo u to kolika je masa neutrina, već da li on uopšte i ima masu. Neutrini se kreću brzinom svetlosti, ili sasvim blizu nje, i skoro da uopšte ne interaguju sa materijom. Oni mogu da se kreću bez zaustavljanja kroz olovni zid debljine nekoliko svetlosnih godina. Ono malo interakcije između neutrina i materije ostvaruje se delovanjem slabih nuklearnih sila. Zbog ovakvih osobina neutrina vrlo ih je teško detektovati. Neutrine je moguće detektovati samo u specijalnim uslovima i pomoću vrlo osetljivih instrumenata.

    Neutron i proton koji su nastali u reakciji (1) spajaju se i formiraju deuteron (D), jezgro jednog oblika vodonika poznatog kao deuterijum, ili “teški vodonik”. Razlika između deuterijuma i običnog vodonika je u prisustvu jednog neutrona više u jezgru. Ovakva jezgra, koja imaju isti broj protona a različit broj neutrona nazivaju se izotopi, i oni predstavljaju različite oblike istog elementa. Najčešće jezgra hemijskih elememenata sadrže isti broj protona i neutrona, ali broj neutrona može da varira i većina elemenata se može naći u ubliku velikog broja različitih izotopa.
    где си пошла с крмељиве очи

  6. #6
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Da bi izbegli konfuziju koja može da nastane kad se govori o izotopina jednog istog elementa nuklearni fizičari dodaju jedan broj savkom simbolu elementa.
    Taj broj označava ukupan broj čestica u jezgru datog elementa. Uobičajeno vodonik se označava sa 1H (ili jednostavnije p+), deuterijum 2H, običan helijum 4He (helijum-4, u jezgru sadrži po dva protona i neutrona), itd. Ovakvim zapisom reakcija (1) može se zapisati u obliku:

    1H + 1H –> 2H + e+ + νe … (2.1)

    Ova jednačina predstavlja nastajanje deuterona fuzijom dva protona, i to je prvi korak u procesu fuzije koja daje energiju većini zvezda. Ova reakcija je početak tzv. proton-proton ciklusa.

    Sledeći korak fuzije je nastanak izotopa helijuma. Jedan slobodan proton interaguje sa nastalim deuteronom i pri tome nastaje jezgro helijum-3 uz oslobađanje energije:

    1H + 2H –> 3He + energija … (2.2)

    Ova reakcija predstavlja drugi korak proton-proton ciklusa. Energija koja je ovde nastala oslobađa se u obliku γ-zraka.
    где си пошла с крмељиве очи

  7. #7
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Treći i završni korak proton-proton ciklusa, koji je kao i oba prethodna višestruko potvrđen labaratorijskim eksperimentima, dovodi do nastanka jezgra helijum-4. Najčešće ovo jezgro nastaje fuzijom dva jezgra helijum-3 koja su nastala u reakciji (2.2). Kao dodatni prozivodi u ovom koraku nastaju još dva protona i oslobađa se energija. Ova reakcija može se predstaviti jednačinom:

    3He + 3He –> 4He + 1H + 1H + energija … (2.3)

    Ukupno gledano ceo proces se odvija tako što četiri protona međusobno reaguju i nataje jedno jezgro helijuma-4, dva neutrina i oslobađa se određena količina energije u obliku γ-zraka. Proton-proton ciklus se može predstaviti jednačinom:

    4(1H ) –> 4He + 2 νe + energija… (3)
    где си пошла с крмељиве очи

  8. #8
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Fotoni γ-zraka koji nastaju u srcu Sunca polako gube energiju dok putuju ka površini. Fotoni i joni koji se nalaze u Suncu apsorbuju fotone a zatim i ponovo emituju na talasnim dužinama koje odgovaraju temperaturi okolnog gasa, prema Vinovom zakonu. Prema tome, kako se zračenje postepeno probija ka površini, kroz sve hladnije slojeve gasa, njegova talasna dužina se sve više smanjuje. Konačno, fotoni elektromagnetnog zračenja napuštaju Sunce u obliku vidljive svetlosti. Neutrini bez ikakvih interakcija odlaze u okolni prostor. Helijum ostaje zarobljen u jezgru. Postoje i drugi mehanizmi koji dovode do sličnih konačnih rezultata, ali oni su dosta retki u zvezdama kao što je Sunce.

    Pored proton-proton ciklusa Sunčevoj energiji doprinose i drugi procesi. U Suncu postoje male količine elemenata složenijih od vodonika i helijuma, ti elementi takođe mogu učestvovati u procesima fuzije.

    U jednom od tih dopunskih procesa izotopi helijuma 3He i 4He formiraju berilijum 7Be. Nastali izotop berilijuma zahvata slobodni elektron i pretvara se u litijum 7Li. Nastali litijum reaguje sa jezgrom 1H pri čemu nastaju dva jezgra 4He.U drugom dopunskom procesu nastalo jezgro 7Be reaguje sa 1H i pri tome nastaje 8B, koji je radioaktivan i raspada se na 8Be. Nastali izotop berilijuma se takođe raspada i pri tom raspadu nastaju dva jezgra 4He. Važnost ovog dopunskog procesa je u tome što priraspadu bora 8B nastaje neutrino, koji je detektovan na Zemlji.Treći dopunski proces je poznat pod nazivom CNO ciklus. Ovo je još jedan fuzioni proces pri kom od vodonika nastaje helijum. Ceo ciklus odvija se u šest koraka:

    I) 12C + 1H –> 13N + energija

    II)
    13N –> 13C + e+ + νe

    III)
    13C + 1H –> 14N + energija

    IV)
    14N + 1H –> 15O + energija

    V)
    15O –> 15N + e+ + νe

    VI)
    15N + 1H –> 12C + 4He
    где си пошла с крмељиве очи

  9. #9
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Sumarno ove reakcije mogu da se predstave jednom jednačinom:
    12C + 4(1H) ïƒ 12C + 4He
    12C ovde igra ulogu katalizatora i on se uopšte ne menja u ovim reakcijama, dok se azot i kiseonik javljaju samo kao međuproizvodi.Elektromagnetne odbojne sile koje se javljaju u CNO ciklusu su veće od onih u proton-proton ciklusu zbog toga što je naelektrisanje težih elemenata veće nego naelektrisanje protona. Prema tome, potrebne su nešto veće temperature da omoguće približavanje jezgara na radiju dejstva jake nuklearne sile i otpočinjanje procesa fuzije.



    Na slici prikazana je numerička procena energije koju Sunce stvara u proton-proton i CNO ciklusu, svaka kao funkcija temperature gasa. Lako se vidi da proton-proton ciklus dominira na nižim temperaturama (do 16 miliona K). Iznad te temperature CNO ciklus je mnogo značajniji. Već je poznato da je temperatura u jezgru Sunca oko 15·106 K, prema tome, sa grafika se vidi da je na toj temperaturi proton-proton ciklus dominantan, tj samo 10% ukupne energije nastaje u CNO ciklusu. Međutim, zvezdekoje imaju veću masu od Sunca često imaju temperaturu jezgra veću od 20·106 K pa je u njima CNO ciklus dominantan u odnosu na proton-proton ciklus.
    где си пошла с крмељиве очи

  10. #10
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Da bi se proverila ispravnost ideje o tome da energija u Suncu nastaje na opisan način potrebno je uporediti energiju koja bi se oslobodila takvim nizom reakcija sa izmerenom energijom, 3·1013 J/kg, koju Sunce emituje.

    Preciznim eksperimentima izvedenim u laboratorijama na Zemlji određene su mase svih čestica koje učestvuju u fuzionim reakcijama proton-proton ciklusa (jednačina 3). Dobijeno je da je ukupna masa četiri protona iznosi 6,6943·10
    -27kg, a masa jezgra helijuma-4 iznosi 6,6466·10-27kg, dok su neutrini bez mase. Razlika u ukupnoj masi između produkata i reaktanata (tj. defekt mase) u reakciji (3) iznosi 0,048·10-27kg.

    To je vrlo mala masa ali je u laboratorijskim uslovima moguće vrlo precizno merenje defekta mase. Da ne bi došlo do narušavanja zakona o održanju mase i energije ova masa mora da se pretvori u ekvivalentnu energiju. Na osnovu već pomenute Ajnštajnove formule za ekvivalentnost mase i energije dobija se da u ovom lancu reakcija biva oslobođeno 4,3·10
    -12J (tj. 26,7 MeV) energije i to je energija koja nastane od svakih 6,7·10-27kg vodonika.

    Lako se vidi da od jednog kilograma vodonika nastane 6,4·10
    13J – više nego dovoljno energije za zagrevanje Sunca. Da bi se obezbedila sadašnja energetska izdašnost Sunca u jezgru se svake sekunde 600 miliona tona vodonika fuzijom prevodi u helijum.
    где си пошла с крмељиве очи

  11. #11
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Nuklearnom fuzijom energija nastaje duboko u unutrašnjosti Sunca. Slojevi koji se nalaze iznad jezgra uopšte ne proizvode energiju, odnosno sva energija koju Sunce emituje nastaje u jezgru koje zauzima samo 1,6% ukupne zapremine Sunca. Energija se iz jezgra prenosi ka spoljašnjosti kroz dva sferna sloja koja okružuju jezgro. Unutrašnji sloj naziva se radijaciona zona, a spoljnji konvektivna zona.

    Nastala toplota se može prenositi sa jednog mesta na drugo na tri različita načina: zračenjem (radijacijom), provođenjem i konvekcijom. Provođenje toplote je prenos energije između čvrstih tela. Konvekcija je provođenje koje nastaje mešanjem toplih i hladnih molekula neke tečnosti ili gasa. Zračenje je prenošenje energije posredstvom elektromagnetnog zračenja. Za prenošenje energije u Suncu zračajno je zračenje i konvekcija.

    U oblastima gde se odvijaju nuklearne reakcije, tj. u jezgru, energija se najvećim delom prenosi zračenjem. Temperatura jezgra je ogromna što dovodi do potpune jonizacije svih atoma koji se u njemu nalaze što omogućava nastalim fotonima γ-zraka da se potpuno neometano kreću. U ovom potpuno jonizovanom gasu apsorpcija fotona je vrlo retka, ali često dolazi do rasejavanja γ-fotona na slobodnim elektronima. Svakim procesom rasejavanja ili retke apsorpcije fotoni gube deo energije i njihova frekvenca se smanjuje kako se penju ka gornjim slojevima. Zbog čestih rasejavanja primarni fotoni dospevaju na površinu Sunca tek nakon vremenskog perioda od oko 106godina.
    где си пошла с крмељиве очи

  12. #12
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce







    Prenos energije zračenjem odvija se i u radijacionoj zoni. Ova zona se prosire na rastojanju od 0,25 do 0,85 poluprečnika Sunca. Udaljavajući se ka površini temperatura u ovoj zoni postepeno opada. Na većim dubinama radijacione zone pad temerature je sporiji ali u njenim višim oblastima temperatura opada vrlo brzo. U blizini gornje granice ove zone temperatura je dovoljno opala da gas prestaje da bude potpuno jonizovan. Idući ka površini Sunca prvo se pojavljuju neutralni atomi helijuma a zatim vodonika (energija prve jonizacije helijuma je 24,59 eV a vodonika 13,6 eV).
    где си пошла с крмељиве очи

  13. #13
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Daljim udaljavanjem od jezgra pored neutralnih atoma počinju da se javljaju i negativni joni vodonika. Ovi joni imaju stabilno stanje sa energijom jonizacije od 0,75 eV, i njima odgovara grabična frekvenca jonizacije koja se nalazi duboko u IC oblasti spektra. Ako foton koji imaju frekvencu veću od od granične pogodi ovakav pozitivan jon dolazi do procesa koji se naziva fotojonizacija, odnosno jon biva neutralisan fotonom. Kako se granična frekvenca nalazi u IC oblasti spektra negativni joni vodonika apsorbuju elektromagnetno zračenje od vidljivog do IC dela spektra.

    Iz tih razloga slojevi u kojima je koncentracija ovakvih jona velika postaju neprozračni. Ova nemogućnost zračenja da se dalje kreće dovodi do pojave velikog negativnog temperaturnog gradijenta, odnosno sa udaljavanjem od jezgra temperatura naglo opada. Nastanak negativnog temperaturnog gradijenta omogućava pojavu konvektivne nestabilnosti i turbulentnih kretanja u površinskim slojevima radijacione zone. U oblasti koja se nalazi između gornje granice radijacione zone i površine Sunca energija više ne može da se prenosi zračenjem nego se prenos odvija konvekcijom. Treba napomenuti da zračenje postoji i u konvektivnoj zoni ali ono nema uticaj na prenos energije.
    где си пошла с крмељиве очи

  14. #14
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    U konvektivnim slojevima dolazi do kretanja velikih masa supstance. Toplije, lakše, mase podižu se ka površini a hladnije, teže, spuštaju se ka dubljim slojevima. Nastanak ovakvog kretanja materije u konvektivnoj zoni je direktna posledica Arhimedovog zakona.

    Gas koji se nalazi blizu konvektivne zone se zagreva, njegova zapremina se povećava, a gustina se smanjuje. Sila potiska deluje na gas i potiskuje ga naviše. Kada dospe u gornje slojeve konvektivne zone sa nižim temperaturama i pritiscima gas nastavlja da se širi ali i hladi. Dalje ponašanje gasa zavisi isključivo od brzine promene temperature sredine. Ako se temperatura ne bi menjala dovoljno brzo došlo bi do izjednačavanja temperature gasa i okoline i proces konvekcije bi brzo prestao.

    Srećom, pri bržim promena bez obzira na hlađenje gas ostaje topliji od okoline što obezbeđuje njegovo dalje podizanje, sve dok ne dospe u površinske slojeve Sunca. Tamo on zračenjem gubi energiju, ohladi se i postaje gušći usled čega počinje da tone u dublje slojeve konvektivne zone.
    где си пошла с крмељиве очи

  15. #15
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    U poređenju sa sličnim događajima na Zemlji – olujama, plimskim talasima, uraganima, snažnim vulkanskim erupcijama i zemljotresima – procesi na Suncu su mnogo bogatiji energijom. Sunce na neki način stalno proizvodi ogromne količine energije, a na osnovu fosilnih ostataka na Zemlji može se zaključiti da ono to radi poslednjih nekoliko milijardi godina. Šta daje snagu Suncu? Koje sile deluju u centru naše zvezde i omogućavaju joj da sija? Koji procesi zagrevaju Sunce dan za danom, godinu za godinom, milenijum za milenijumom? Traganje za odgovorima na ova pitanja je jedan od najbitnijih zadataka astronomije. Bez tih odgovora nemoguće je razumeti niti fizičko postojanje zvezda, niti galaksija, a još manje biološko postojanje života na Zemlji.

    Kao što je poznato masa Sunca iznosi 2·1030 kg, a ukupna energija koju ono zrači iznosi oko 4·1026J. Efikasnost Sunca može se lako dobiti jednostavnim deljenjem ove dve vrednosti. Tako se dobija da ono zrači 2·10-4 J/kg, odnosno 0,0002 J energije svake sekunde. Ovo uopšte nije velika količina energije, komad zapaljenog drveta daje milion puta veću energiju po jedinici mase u svakoj sekundi sagorevanja. Ali, postoji jedna vrlo bitna razlika: ko je video drvo koje neprekidno gori milijardama godina?
    где си пошла с крмељиве очи

  16. #16
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Da bi videli koliku količinu energije Sunce stvarno oslobađa u okolni prostor moramo da posmatramo ukupnu energiju koju ono emituje tokom čitavog života. Ovo je vrlo jednostavno izračunati, a vrednost koja se dobija je 3·1013J/kg. Ovaj broj predstavlja prosečnu energiju koju je emitovao svaki kilogram mase Sunca od kad je ono nastalo, ustvari to je samo minimalna energija. Sunce svakog dana emituje novu energiju. Kako se procenjuje da će Sunce sijati još narednih pet milijardi godina , ukupna energija koju će ono osloboditi tokom celog svog života biće duplo veća.

    Odnos mase Sunca i energije je ogroman. Trideset biliona džula energije oslobodilo se iz svakog kilograma materije Sunca od njegovog nastanka do danas. Ali, nastanak energije u Suncu nije eksplozivan, ne oslobađa se ogromna količina energije u kratkom vremenskom intervali. Nasuprot, ovaj proces je spor ali stabilan, i on omogućava uniformno i dugotrajno snabdevanje Sunca neophodnom energijom. Samo jedan poznat mehanizam nastanka energije može održavati snagu Sunca na ovakav način. Taj proces poznat je pod nazivom nuklearna fuzija, spajanje lakših jezgra i nastanak težih.
    где си пошла с крмељиве очи

  17. #17
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Unutrašnjost Sunca okružena je površinskim slojem debljine između 300 i 400 kilometara koji se naziva fotosfera. Sa Zemlje fotosfera se uočava u obliku sjajnog diska. Fotosfera je prvi prozračan sloj Sunca, dok su unutrašnji slojevi ispod nje nedostupni direktnom posmatranju.

    Gustina fotosfere u proseku iznosi 2·10-4kg/m3. Fotosfera je najgušći omotač Sunca ali ipak je mnogo ređa od Zemljine atmosfere. Na njenom dnu temperatura iznosi oko 9.000 K, a na gornjoj granici temperatura je 4.5000 K. Zbog relativno niskih temperatura u fotosferi su prisutni, pored neutralnih atoma, i neki molekuli (CO, H2, CH, CN, itd.).

    Kroz fotosferu energija se prenosi uglavnom zračenjem, ali to ne znači da u njoj nije prisutna konvekcija. Pokazatelj postojanja konvekcije u fotosferi je njena zrnasta struktura. U fotosferi se nalaze svetla zrna, tzv. granule, koja predstavljaju mlazeve gasa koji izbijaju na površinu iz nižih slojeva. Temperatura ovih gasova je za oko 100 K viša od temperature fotosfere, tako da je njihov sjaj za oko 20% veći. Nakon izbijanja na površinu gas u granulama se hladi, usled čega one tonu u dublje slojeve a na njihovo mesto dolaze nove. Prosečno vreme trajanja jedne granule je 5-15 minuta. Prečnici granula, u proseku, iznose oko 1.500 km, a na Sunčevom disku ih u svakom trenutku ima oko 2 miliona.
    где си пошла с крмељиве очи

  18. #18
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce

    Granule razdvajaju tamna područija širine do 1.000 km. Ove tamnije oblasti su za oko 350-400 K hladnije i oko 35-40% tamnije granula. Fraunhoferove linije spektra u oblasti granula imaju cik-cak formu, pri čemu plavi pomak odgovara granuli koja se podiže ka površini, a crveni onoj koja ide ka unutrašnjosti. Na osnovu Doplerovog efekta utvrđeno je da se gramnule kreću brzinom od 0,3 km/s.

    Konvekcija se u fotosferi ispoljava i u oblastima mnogo većih dimenzija od dimenzija granula, što dovodi do pojave tzv. supergranula. Supergranule imaju oblik poligonalnih ćelija, sa prosečnim prečnikom od oko 30.000 km i traju po nekoliko desetina sati. Supergranule prekrivaju celokupnu površinu Sunca, a njihov broj je u svakom trenutku oko 2.000. Osim veće površine, supergranule karakteriše i veća konvekcija. U centralnim delovima granule materija iz dubljih slojeva podiže se vertikalno uvis ka površini, a na njihovim obodima se ponovo vraća u dubinu. Brzine ovakvog kretanja materije kreću se između desetak metara i nekoliko kilometara u sekundi. Zajedno sa gasom, koji je delimično jonizovan, prenosi se i magnetno polje, pa se ono koncentriše pri rubovima supergranula.

    Povremeno dolazi do oscilovanje cele Sunčeve atmosfere sa čitavim nizom perioda. Najčešće je tzv. petominutni period (prosek perioda od 4 do 8 minuta). Ove oscilacije uzrokovane su pritiskom gasa koji nastaje usled konvektivnog kretanja u dubini Sunca.

    Ovo oscilovanje prenosi se na veliki deo Sunčeve unutrašnjosti, slično kao se kroz Zemlju šire zemljotresni talasi. Talasi se odbijaju od površinskih slojeva Sunca u kojima gustina naglo opada. Kako se ovakvi talasi na Zemlji koriste za izučavanje nedostupne unutrašnjosti Zemlje, naučnici se nadaju da će ovi talasi pomoći boljem upoznavanju Sunčeve unutrašnjosti. Područije tog izučavanja već je dobilo naziv helioseizmologija.
    где си пошла с крмељиве очи

  19. #19
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce




    Na slici prikazan je izgled Sunca u optičkom delu spektra. Lako su uočljive tamne oblasti po površini Sunca. Prvi ko je detaljno proučavao ove “tačke” bio je Galileo Galilej. Postojanje ovih crnih tačaka bio je prvi znak da Sunce nije savršeno i nepromenljivo, već da se tamo dešavaju neke stalne promene. Ove tamne oblasti nazvane su pege. One najčešće imaju dimenzije od oko 10.000 km, priblično veličini Zemlje. Kao što se vidi na slici, pege se najčešće javljaju u grupama. U svakom trenutku na Suncu se može naći na stotine pega ali ono, takođe, može biti bez ijedne pege.
    где си пошла с крмељиве очи

  20. #20
    Registrovani Član
    причалица avatar
    Status : причалица je odsutan
    Registrovan : Jun 2009
    Pol:
    Lokacija : under my skin
    Poruke : 57,468
    Tekstova u blogu : 38

    Početno Re: Sunce




    Proučavanje pega ukazuje na to da se one sastoje iz dva dela. U sredini pege nalazi se taman, centralni, deo koji se naziva senka ili umbra. Oko umbre nalazi se nešto svetlija oblast koja se naziva polusenka ili penumbra. Detaljne fotografije pega omogućavaju nam da vrlo lepo vidimo strukturu pega. Penumbra je okružena mnogo sjajnijom fotosferom. Postepena promena boje je posledica promene temperature fotosfere. Srednji prečnik senke iznosi oko 17.000 km a polusenke oko 37.000 km. Pege su, jednostavno, hladnije oblasti fotosfere.

    Temperatura u oblasti senke iznosi oko 4.500 K a u polusenci 5.500 K, dok sjaj senke iznosi između 20% i 30%, a polusenke između 75% i 80% sjaja neporemećene sredine. Pege se, znači, sastoje od vrelog gasa ali one izgledaju crne jedino zato što se nalaze okružene mnogo toplijom fotosferom (temperatura 6.000 K). Ako bi nekako mogli da pomerimo pege sa Sunca (ili jednostavnije, zaklonimo svetlost fotosfere) pege bi bile vrlo sjajne, onoliko sjajne koliko i svako drugo telo zagrejano do temperature od 5.000 K.

    Pege nisu stabilne. Većina menja svoju veličinu i oblik, a sve pege dolaze i odlaze. Pojedinačne pege mogu da traju od 1 do 100 dana (prosečno trajanje pega je između 10 i 20 dana), dok grupe pega u proseku traju oko 50 dana.
    где си пошла с крмељиве очи

Stranica 1 od 3 123 ZadnjaZadnja

Slične teme

  1. NE nuklearnoj energiji – imamo Sunce
    Od Ometač u forumu Ekologija
    Odgovora: 11
    Poslednja poruka: 14-10-2011, 13:15
  2. Novi pogled na Sunce
    Od kojica u forumu Astronomija
    Odgovora: 4
    Poslednja poruka: 05-10-2011, 06:02
  3. Naša planeta dobija "drugo sunce"
    Od Пркос u forumu Prirodne pojave
    Odgovora: 0
    Poslednja poruka: 22-01-2011, 15:39

Članovi koji su pročitali ovu temu: 0

There are no members to list at the moment.

Oznake za ovu temu

Dozvole

  • Ne možete otvoriti novu temu
  • Ne možete slati odgovore
  • Ne možete postavljati priloge
  • Ne možete izmeniti svoju poruku
  •